Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 348: 123906, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561036

RESUMO

Recently, there has been an increasing emphasis on examining the ecotoxicological effects of anthropogenic microparticles (MPs), especially microplastic particles, and related issues. Nevertheless, a notable deficiency exists in our understanding of the consequences on marine organisms, specifically in relation to microfibers and the combined influence of MPs and temperature. In this investigation, mysid shrimp (Americamysis bahia), an important species and prey item in estuarine and marine food webs, were subjected to four separate experimental trials involving fibers (cotton, nylon, polyester, hemp; 3 particles/ml; approximately 200 µm in length) or fragments (low-density Polyethylene: LDPE, polylactic acid: PLA, and their leachates; 5, 50, 200, 500 particles/ml; 1-20 µm). To consider the effects in the context of climate change, three different temperatures (22, 25, and 28 °C) were examined. Organismal growth and swimming behavior were measured following exposure to fragments and microfibers, and reactive oxygen species and particle uptake were investigated after microfiber exposure. To simulate the physical characteristics of MP exposure, such as microfibers obstructing the gills, we also assessed the post-fiber-exposure swimming behavior in an oxygen-depleted environment. Data revealed negligible fragment, but fiber exposure effects on growth. PLA leachate triggered higher activity at 25 °C and 28 °C; LDPE exposures led to decreased activity at 28 °C. Cotton exposures led to fewer behavioral differences compared to controls than other fiber types. The exposure to hemp fibers resulted in significant ROS increases at 28 °C. Microfibers were predominantly located within the gastric and upper gastrointestinal tract, suggesting extended periods of residence and the potential for obstructive phenomena over the longer term. The combination of increasing water temperatures, microplastic influx, and oxidative stress has the potential to pose risks to all components of marine and aquatic food webs.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Microplásticos , Temperatura , Água , Polietileno , Brasil , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Crustáceos , Poliésteres
2.
Chemosphere ; 296: 133934, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35176295

RESUMO

Synthetic rubber emissions from automobile tires are common in aquatic ecosystems. To assess potential impacts on exposed organisms, early life stages of the estuarine indicator species Inland Silverside (Menidia beryllina) and mysid shrimp (Americamysis bahia) were exposed to three tire particle (TP) concentrations at micro and nano size fractions (0.0038, 0.0378 and 3.778 mg/L in mass concentrations for micro size particles), and separately to leachate, across a 5-25 PSU salinity gradient. Following exposure, M. beryllina and A. bahia had significantly altered swimming behaviors, such as increased freezing, changes in positioning, and total distance moved, which could lead to an increased risk of predation and foraging challenges in the wild. Growth for both A. bahia and M. beryllina was reduced in a concentration-dependent manner when exposed to micro-TP, whereas M. beryllina also demonstrated reduced growth when exposed to nano-TP (except lowest concentration). TP internalization was dependent on the exposure salinity in both taxa. The presence of adverse effects in M. beryllina and A. bahia indicate that even at current environmental levels of tire-related pollution, which are expected to continue to increase, aquatic ecosystems may be experiencing negative impacts.


Assuntos
Ecossistema , Poluentes Químicos da Água , Animais , Crustáceos , Peixes , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Environ Sci Technol ; 18(4): 224-30, 1984 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22263759
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA